Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Environ Res Public Health ; 19(24)2022 12 09.
Article in English | MEDLINE | ID: covidwho-2155106

ABSTRACT

The current pandemic has provided an opportunity to test wastewater-based epidemiology (WBE) as a complementary method to SARS-CoV-2 monitoring in the community. However, WBE infection estimates can be affected by uncertainty factors, such as heterogeneity in analytical procedure, wastewater volume, and population size. In this paper, raw sewage SARS-CoV-2 samples were collected from four wastewater treatment plants (WWTPs) in Tuscany (Northwest Italy) between February and December 2021. During the surveillance period, viral concentration was based on polyethylene glycol (PEG), but its precipitation method was modified from biphasic separation to centrifugation. Therefore, in parallel, the recovery efficiency of each method was evaluated at lab-scale, using two spiking viruses (human coronavirus 229E and mengovirus vMC0). SARS-CoV-2 genome was found in 80 (46.5%) of the 172 examined samples. Lab-scale experiments revealed that PEG precipitation using centrifugation had the best recovery efficiency (up to 30%). Viral SARS-CoV-2 load obtained from sewage data, adjusted by analytical method and normalized by population of each WWTP, showed a good association with the clinical data in the study area. This study highlights that environmental surveillance data need to be carefully analyzed before their use in the WBE, also considering the sensibility of the analytical methods.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Sewage , Calibration , Environmental Monitoring , RNA, Viral
2.
Int J Environ Res Public Health ; 19(15)2022 08 02.
Article in English | MEDLINE | ID: covidwho-1969263

ABSTRACT

Analysis of atmospheric particulate matter (PM) has been proposed for the environmental surveillance of SARS-CoV-2. The aim of this study was to increase the current knowledge about the occurrence of SARS-CoV-2 in atmospheric PM, introduce a dedicated sampling method, and perform a simultaneous assessment of human seasonal coronavirus 229E. Thirty-two PM samples were collected on quartz fiber filters and six on Teflon using a low- and high-volumetric rate sampler, respectively, adopting a novel procedure for optimized virus detection. Sampling was performed at different sites in the Venice area (Italy) between 21 February and 8 March 2020 (n = 16) and between 27 October and 25 November 2020 (n = 22). A total of 14 samples were positive for Coronavirus 229E, 11 of which were collected in October-November 2020 (11/22; positivity rate 50%) and 3 in February-March 2020 (3/16 samples, 19%). A total of 24 samples (63%) were positive for SARS-CoV-2. Most of the positive filters were collected in October-November 2020 (19/22; positivity rate, 86%), whereas the remaining five were collected in February-March 2020 at two distinct sites (5/16, 31%). These findings suggest that outdoor PM analysis could be a promising tool for environmental surveillance. The results report a low concentration of SARS-CoV-2 in outdoor air, supporting a scarce contribution to the spread of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Italy/epidemiology , Particulate Matter/analysis
3.
Environ Technol Innov ; 28: 102667, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1851091

ABSTRACT

This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d - 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.

4.
Int J Environ Res Public Health ; 19(10)2022 05 11.
Article in English | MEDLINE | ID: covidwho-1847333

ABSTRACT

The SARS-CoV-2 can spread directly via saliva, respiratory aerosols and droplets, and indirectly by contact through contaminated objects and/or surfaces and by air. In the context of COVID-19 fomites can be an important vehicle of virus transmission and contribute to infection risk in public environments. The aim of the study was to analyze through surface sampling (sponge method) the presence of SARS-CoV-2 in public and working environments, in order to evaluate the risk for virus transmission. Seventy-seven environmental samples were taken using sterile sponges in 17 animal farms, 4 public transport buses, 1 supermarket and 1 hotel receptive structure. Furthermore, 246 and 93 swab samples were taken in the farms from animals and from workers, respectively. SARS-CoV-2 detection was conducted by real-time RT-PCR and by digital droplet RT-PCR (dd RT-PCR) using RdRp, gene E and gene N as targets. None of the human and animal swab samples were positive for SARS-CoV-2, while detection was achieved in 20 of the 77 sponge samples (26%) using dd RT-PCR. Traces of the RdRp gene, gene E and gene N were found in 17/77 samples (22%, average concentration 31.2 g.c./cm2, range 5.6 to 132 g.c./cm2), 8/77 samples (10%, average concentration 15.1 g.c./cm2, range 6 to 36 g.c./cm2), and in 1/77 (1%, concentration 7.2 g.c./cm2). Higher detection rates were associated with sampling in animal farms and on public transport buses (32% and 30%) compared to the supermarket (21%) and the hotel (no detection). The result of the study suggests that the risk of contamination of surfaces with SARS-CoV-2 increases in environments in which sanitation strategies are not suitable and/or in highly frequented locations, such as public transportation. Considering the analytical methods, the dd RT-PCR was the only approach achieving detection of SARS-CoV-2 traces in environmental samples. Thus, dd RT-PCR emerges as a reliable tool for sensitive SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/epidemiology , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics
5.
Int J Hyg Environ Health ; 242: 113948, 2022 05.
Article in English | MEDLINE | ID: covidwho-1783418

ABSTRACT

There is increasing evidence of the use of wastewater-based epidemiology to integrate conventional monitoring assessing disease symptoms and signs of viruses in a specific territory. We present the results of SARS-CoV-2 environmental surveillance activity in wastewater samples collected between September 2020 and July 2021 in 9 wastewater treatment plants (WTPs) located in central and western Sicily, serving over 570,000 residents. The presence of SARS-CoV-2, determined in 206 wastewater samples using RT-qPCR assays, was correlated with the notified and geo-referenced cases on the areas served by the WTPs in the same study period. Overall, 51% of wastewater samples were positive. Samples were correlated with 33,807 SARS-CoV-2 cases, reported in 4 epidemic waves, with a cumulative prevalence of 5.9% among Sicilian residents. The results suggest that the daily prevalence of SARS-CoV-2 active cases was statistically significant and higher in areas with SARS-CoV-2 positive wastewater samples. According to these findings, the proposed method achieves a good sensitivity profile (78.3%) in areas with moderate or high viral circulation (≥133 cases/100,000 residents) and may represent a useful tool in the management of epidemics based on an environmental approach, although it is necessary to improve the accuracy of the process.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pilot Projects , Sicily/epidemiology , Wastewater , Wastewater-Based Epidemiological Monitoring
6.
J Virol Methods ; 300: 114420, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1654871

ABSTRACT

The emergence and spread of SARS-CoV-2 has led to a compelling request for accurate diagnostic tests. The aim of this study was assessing the performance of a real-time RT-qPCR (rt RT-qPCR) assay and of a droplet digital RT-PCR (dd RT-PCR) targeting the nsp14 genome region for the detection of SARS-CoV-2 in nasopharyngeal swabs. A total of 258 nasopharyngeal swabs were analyzed with the nsp14 assays and, for comparison, with a reference assay targeting the RdRp and E genes. Conflicting results were further investigated by two additional protocols, the Centers for Disease Control and Prevention (CDC) real-time targeting N1/N2, and a nested RT-PCR for the spike region. Agreement of results was achieved on 226 samples (156 positive and 70 negative), 8 samples were positive in the reference assay and in the nsp14 rt RT-qPCR but negative with the dd RT-PCR, and 24 samples provided different combinations of results with the three assays. Sensitivity, specificity and accuracy (95 %C.I.) of the nsp14 assays were: 100.0 % (97.4-100.0), 98.7 % (92.1-100.0), and 99.6 % (97.5-100.0) for the rt RT-qPCR; 92.4 % (87.4-95.6), 100.0 % (94.2-100.0), and 94.7 % (91.1-97.0) for the dd RT-PCR. The results of the study support the use of the nsp14 real-time RT-qPCR and ddPCR for the detection of SARS-CoV-2 in nasopharyngeal swabs.


Subject(s)
COVID-19 , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , COVID-19/diagnosis , Exonucleases , Humans , Nasopharynx/virology , RNA, Viral/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
7.
Int J Environ Res Public Health ; 19(2)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625480

ABSTRACT

Bivalve shellfish are readily contaminated by human pathogens present in waters impacted by municipal sewage, and the detection of SARS-CoV-2 in feces of infected patients and in wastewater has drawn attention to the possible presence of the virus in bivalves. The aim of this study was to collect data on SARS-CoV-2 prevalence in bivalve mollusks from harvesting areas of Campania region. A total of 179 samples were collected between September 2019 and April 2021 and were tested using droplet digital RT-PCR (dd RT-PCR) and real-time RT-PCR. Combining results obtained with different assays, SARS-CoV-2 presence was detected in 27/179 (15.1%) of samples. A median viral concentration of 1.1 × 102 and 1.4 × 102 g.c./g was obtained using either Orf1b nsp14 or RdRp/gene E, respectively. Positive results were unevenly distributed among harvesting areas and over time, positive samples being more frequent after January 2021. Partial sequencing of the spike region was achieved for five samples, one of which displaying mutations characteristic of the Alpha variant (lineage B.1.1.7). This study confirms that bivalve mollusks may bioaccumulate SARS-CoV-2 to detectable levels and that they may represent a valuable approach to track SARS-CoV-2 in water bodies and to monitor outbreak trends and viral diversity.


Subject(s)
Bivalvia , COVID-19 , Animals , Humans , RNA, Viral , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Wastewater
8.
Int J Environ Res Public Health ; 18(19)2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1444203

ABSTRACT

As a complement to clinical disease surveillance, the monitoring of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater can be used as an early warning system for impending epidemics. This study investigated the dynamics of SARS-CoV-2 in untreated wastewater with respect to the trend of coronavirus disease 2019 (COVID-19) prevalence in Southern Italy. A total of 210 wastewater samples were collected between May and November 2020 from 15 Apulian wastewater treatment plants (WWTP). The samples were concentrated in accordance with the standard of World Health Organization (WHO, Geneva, Switzerland) procedure for Poliovirus sewage surveillance, and molecular analysis was undertaken with real-time reverse-transcription quantitative PCR (RT-(q) PCR). Viral ribonucleic acid (RNA) was found in 12.4% (26/210) of the samples. The virus concentration in the positive samples ranged from 8.8 × 102 to 6.5 × 104 genome copies/L. The receiver operating characteristic (ROC) curve modeling showed that at least 11 cases/100,000 inhabitants would occur after a wastewater sample was found to be positive for SARS-CoV-2 (sensitivity = 80%, specificity = 80.9%). To our knowledge, this is the first study in Italy that has applied wastewater-based epidemiology to predict COVID-19 prevalence. Further studies regarding methods that include all variables (meteorological phenomena, characteristics of the WWTP, etc.) affecting this type of wastewater surveillance data would be useful to improve data interpretation.


Subject(s)
COVID-19 , Humans , Italy/epidemiology , SARS-CoV-2 , Sewage , Wastewater
9.
Water ; 13(18):2503, 2021.
Article in English | MDPI | ID: covidwho-1411093

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) poses an increased risk to global public health and underlines the need to prioritise monitoring and research to better respond to the COVID-19 pandemic. Wastewater monitoring can be used to monitor SARS-CoV-2 spread and to track SARS-CoV-2 variants. A long read amplicon sequencing approach based on the Oxford Nanopore technology, targeting the spike protein, was applied to detect SARS-CoV-2 variants in sewage samples collected in central Italy on April 2021. Next-generation sequencing was performed on three pooled samples. For variant identification, two approaches–clustering (unsupervised) and classification (supervised)–were implemented, resulting in the detection of two VOCs and one VOI. Key mutations of the Alpha variant (B.1.1.7) were detected in all of the pools, accounting for the vast majority of NGS reads. In two different pools, mutations of the Gamma (P.1) and Eta (B.1.525) variants were also detected, accounting for 22.4%, and 1.3% of total NGS reads of the sample, respectively. Results were in agreement with data on variant circulation in Italy at the time of wastewater sample collection. For each variant, in addition to the signature key spike mutations, other less common mutations were detected, including the amino acid substitutions S98F and E484K in the Alpha cluster (alone and combined), and S151I in the Eta cluster. Results of the present study show that the long-read sequencing nanopore technology can be successfully used to explore SARS-CoV-2 diversity in sewage samples, where multiple variants can be present, and that the approach is sensitive enough to detect variants present at low abundance in wastewater samples. In conclusion, wastewater monitoring can help one discover the spread of variants in a community and early detect the emerging of clinically relevant mutations or variants.

10.
Sci Total Environ ; 750: 141711, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-713671

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the coronavirus disease COVID-19, a public health emergency worldwide, and Italy is among the most severely affected countries. The first autochthonous Italian case of COVID-19 was documented on February 21, 2020. We investigated the possibility that SARS-CoV-2 emerged in Italy earlier than that date, by analysing 40 composite influent wastewater samples collected - in the framework of other wastewater-based epidemiology projects - between October 2019 and February 2020 from five wastewater treatment plants (WWTPs) in three cities and regions in northern Italy (Milan/Lombardy, Turin/Piedmont and Bologna/Emilia Romagna). Twenty-four additional samples collected in the same WWTPs between September 2018 and June 2019 (i.e. long before the onset of the epidemic) were included as 'blank' samples. Viral concentration was performed according to the standard World Health Organization procedure for poliovirus sewage surveillance, with modifications. Molecular analysis was undertaken with both nested RT-PCR and real-rime RT-PCR assays. A total of 15 positive samples were confirmed by both methods. The earliest dates back to 18 December 2019 in Milan and Turin and 29 January 2020 in Bologna. Virus concentration in the samples ranged from below the limit of detection (LOD) to 5.6 × 104 genome copies (g.c.)/L, and most of the samples (23 out of 26) were below the limit of quantification of PCR. Our results demonstrate that SARS-CoV-2 was already circulating in northern Italy at the end of 2019. Moreover, it was circulating in different geographic regions simultaneously, which changes our previous understanding of the geographical circulation of the virus in Italy. Our study highlights the importance of environmental surveillance as an early warning system, to monitor the levels of virus circulating in the population and identify outbreaks even before cases are notified to the healthcare system.


Subject(s)
Coronavirus Infections , Environmental Monitoring , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , Italy/epidemiology , SARS-CoV-2
11.
IEEE Trans Radiat Plasma Med Sci ; 4(4): 391-399, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-662861

ABSTRACT

The COVID-19 crisis profoundly disguised the vulnerability of human societies and healthcare systems in the situation of a pandemic. In many instances, it became evident that the quick and safe reduction of viral load and spread is the foremost principle in the successful management of such a pandemic. However, it became also clear that many of the established routines in healthcare are not always sufficient to cope with the increased demand for decontamination procedures of items, healthcare products, and even infected tissues. For the last 25 years, the use of gas plasma technology has sparked a tremendous amount of literature on its decontaminating properties, especially for heat-labile targets, such as polymers and tissues, where chemical decontamination often is not appropriate. However, while the majority of earlier work focused on bacteria, only relatively few reports are available on the inactivation of viruses. We here aim to provide a perspective for the general audience of the chances and opportunities of gas plasma technology for supporting healthcare during viral pandemics such as the COVID-19 crisis. This includes possible real-world plasma applications, appropriate laboratory viral test systems, and critical points on the technical and safety requirements of gas plasmas for virus inactivation.

12.
Sci Total Environ ; 736: 139652, 2020 Sep 20.
Article in English | MEDLINE | ID: covidwho-343544

ABSTRACT

Several studies have demonstrated the advantages of environmental surveillance through the monitoring of sewage for the assessment of viruses circulating in a given community (wastewater-based epidemiology, WBE). During the COVID-19 public health emergency, many reports have described the presence of SARS-CoV-2 RNA in stools from COVID-19 patients, and a few studies reported the occurrence of SARS-CoV-2 in wastewaters worldwide. Italy is among the world's worst-affected countries in the COVID-19 pandemic, but so far there are no studies assessing the presence of SARS-CoV-2 in Italian wastewaters. To this aim, twelve influent sewage samples, collected between February and April 2020 from Wastewater Treatment Plants in Milan and Rome, were tested adapting, for concentration, the standard WHO procedure for Poliovirus surveillance. Molecular analysis was undertaken with three nested protocols, including a newly designed SARS-CoV-2 specific primer set. SARS-CoV-2 RNA detection was accomplished in volumes of 250 ml of wastewaters collected in areas of high (Milan) and low (Rome) epidemic circulation, according to clinical data. Overall, 6 out of 12 samples were positive. One of the positive results was obtained in a Milan wastewater sample collected a few days after the first notified Italian case of autochthonous SARS-CoV-2. The study confirms that WBE has the potential to be applied to SARS-CoV-2 as a sensitive tool to study spatial and temporal trends of virus circulation in the population.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , Wastewater/virology , COVID-19 , Humans , Italy , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sewage/virology
13.
Water Res ; 179: 115899, 2020 Jul 15.
Article in English | MEDLINE | ID: covidwho-165774

ABSTRACT

Coronaviruses (CoV) are a large family of viruses causing a spectrum of disease ranging from the common cold to more severe diseases as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). The recent outbreak of coronavirus disease 2019 (COVID-19) has become a public health emergency worldwide. SARS-CoV-2, the virus responsible for COVID-19, is spread by human-to-human transmission via droplets or direct contact. However, since SARS-CoV-2 (as well as other coronaviruses) has been found in the fecal samples and anal swabs of some patients, the possibility of fecal-oral (including waterborne) transmission need to be investigated and clarified. This scoping review was conducted to summarize research data on CoV in water environments. A literature survey was conducted using the electronic databases PubMed, EMBASE, and Web Science Core Collection. This comprehensive research yielded more than 3000 records, but only 12 met the criteria and were included and discussed in this review. In detail, the review captured relevant studies investigating three main areas: 1) CoV persistence/survival in waters; 2) CoV occurrence in water environments; 3) methods for recovery of CoV from waters. The data available suggest that: i) CoV seems to have a low stability in the environment and is very sensitive to oxidants, like chlorine; ii) CoV appears to be inactivated significantly faster in water than non-enveloped human enteric viruses with known waterborne transmission; iii) temperature is an important factor influencing viral survival (the titer of infectious virus declines more rapidly at 23°C-25 °C than at 4 °C); iv) there is no current evidence that human coronaviruses are present in surface or ground waters or are transmitted through contaminated drinking-water; v) further research is needed to adapt to enveloped viruses the methods commonly used for sampling and concentration of enteric, non enveloped viruses from water environments. The evidence-based knowledge reported in this paper is useful to support risk analysis processes within the drinking and wastewater chain (i.e., water and sanitation safety planning) to protect human health from exposure to coronavirus through water.


Subject(s)
Coronavirus Infections , Pneumonia, Viral , Water Supply , Betacoronavirus , COVID-19 , Feces , Humans , Pandemics , SARS-CoV-2 , Water
SELECTION OF CITATIONS
SEARCH DETAIL